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Abstract
We describe the construction of a macrophage-tropic
HIV-1 molecular clone, pNLAD8-EGFP, which expresses
enhanced green fluorescent protein. We show that
NLAD8-EGFP can infect monocyte-derived macrophages
as well as alveolar macrophages. NLAD8-EGFP-infected
macrophages can be easily and sensitively detected
based on the visualization of intracellular green fluores-
cent protein.

Copyright © 2002 National Science Council, ROC and S. Karger AG, Basel

HIV-1 infects CD4+ T lymphocytes as well as mono-
cytes/macrophages. Beyond the circulatory system, tissue
macrophages are the predominant substrates for HIV-1
infection in the central nervous system, lungs, lymph
nodes, liver and skin/muscle [5, 9, 11, 12, 17, 18, 28, 30,
34, 35]. Macrophages also serve as the major producer of
HIV-1 in seropositive individuals with opportunistic in-
fections [23]. Because HIV-1-infected macrophages show
minimal cytopathic effects and because macrophages are

the initially infected entities after in vivo seroconversion,
these long-lived cells may be a primary repository for eith-
er actively replicating or latent HIV-1. Indeed, conclusive
findings from a recent study in the simian immunodefi-
ciency virus/macaque model system lend credence to the
hypothesis that macrophages are the major HIV-1 reser-
voir in infected humans [14].

Our current understanding of HIV-1 infectivity is that
macrophage-tropic (M-tropic) and T cell-tropic (T-tropic)
viruses use different cell surface coreceptors [4]. Thus,
both M- and T-tropic HIV-1 envelopes bind the CD4
receptor; the former also interacts with the CCR5 core-
ceptor, while the latter contacts the CXCR4 coreceptor.
In vivo, there appears to be an initial negative selection(s)
against CXCR4 HIV-1 [37]. Thus, at the early stage of
infection, CCR5-M-tropic virus predominates [4]. To bet-
ter understand virus-macrophage dynamics, it would be
useful to have a rapid and sensitive assay of HIV-1 infec-
tion in macrophages. To this end, we considered the con-
struction of an M-tropic HIV-1 which expresses enhanced
green fluorescent protein (EGFP).

We began with the molecular clone pNLAD8, which is
an M-tropic derivative of the T-tropic HIV-1 NL4-3 [2].
pNLAD8 was modified (by Eric Freed) by substituting a
Kpn I to Bsm I fragment from an M-tropic env for the
counterpart env fragment in pNL4-3. As a result of this
fragment swap, the chimeric pNLAD8 genome was con-
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Fig. 1. Schematic representation of pNLAD8-EGFP. pNLAD8 (gift from E. Freed) was constructed by swapping the
AD8 envelope sequence contained within a Kpn I to Bsm I fragment (positions 6347–8053) into pNL4-3. The green
fluorescent protein coding sequence from pEGFP-1 (Clontech) was amplified by PCR and inserted in frame into the
Xho I site of nef in pNLAD8 to create pNLAD8-EGFP. pNLAD8-EGFP expresses a functional green fluorescent
protein but does not express Nef.

Fig. 2. Electron micrographs of HIV-1 parti-
cles in NLAD8-EGFP-infected cultured
monocytes. Virus stock was produced by
transfection of the molecular clone
pNLAD8-EGFP into adherent HeLa cells.
Supernatant virus was used to infect culture
monocyte-derived macrophages prepared as
previously described [1, 29]. On day 10 after
infection, cells were fixed with glutaralde-
hyde and visualized by electron microscopy.
A and B show different magnifications.

verted to one fully infectious for cultured macrophages.
Previously, we have shown that HIV-1 can efficiently
express heterologous open reading frames which are in-
serted into its nef gene [3, 6, 13, 21, 26, 31, 32]. Accord-
ingly, to create an M-tropic HIV-1 which can be rapidly
and sensitively detected in cells, we placed an egfp cDNA
into nef of pNLAD8, thus creating the pNLAD8-EGFP
molecular clone (fig. 1).

Figure 1 shows a schematic representation of
pNLAD8-EGFP. The EGFP open reading frame was am-

plified by polymerase chain reaction (PCR) from the
pEGFP-1 plasmid (Clontech, Palo Alto, Calif., USA) and
was inserted in frame into an Xho I site downstream of the
authentic nef AUG. This insertion of EGFP disrupted
nef, creating the NLAD8-EGFP genome, which is genoty-
pically egfp(+)/nef(–). 

A priori, it was unclear whether an interrupting inser-
tion of egfp into nef would affect the infectivity and/or
replication competence of NLAD8-EGFP. Elsewhere,
studies have suggested that Nef is very important for pro-



Macrophage-Tropic HIV-1 that Infects
Alveolar and Monocyte-Derived
Macrophages

J Biomed Sci 2002;9:721–726 723

Fig. 3. Cultured monocyte-derived macro-
phages infected with pNLAD8-EGFP show
fluorescent syncytia. Cells were infected with
NLAD8-EGFP. On day 20, many multinu-
cleated syncytia were evident. Three exam-
ples of fluorescent syncytia visualized by
confocal microscopy are shown. Left, blue
colored images; right, the same fluorescent
images in black and white (bottom).

ductive infection of primary human T lymphocytes and
macrophages by HIV-1 [19, 33]. We thus examined this
question and sought to verify the cell tropism of NLAD8-
EGFP. We investigated infection by NLAD8-EGFP of
cultured macrophages derived from primary blood mono-
cytes. NLAD8-EGFP virus was produced by transfecting
the molecular plasmid pNLAD8-EGFP into adherent
HeLa cells. Forty-eight hours later, a robust amount of

reverse transcriptase activity was detected in the cell cul-
ture supernatant, consistent with the generation of viral
particles. Culture supernatant (approximately 500,000
cpm of reverse transcriptase activity) was collected and
used to infect human macrophages prepared as previously
described [29]. Ten days after infection, the cells were
visualized by electron microscopy. Numerous intracellu-
lar HIV-1 particles were clearly seen in the macrophages,
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Fig. 4. Preferential infection of AM from healthy cigarette smokers compared to AM from nonsmokers. Preparation
and infection of AM from smokers and nonsmokers were performed as previously described [1, 29]. Cells were
visualized 20 days after infection with NLAD8-EGFP. Representative fields of view are shown for uninfected control
AM (top row, left panel), ‘infected’ AM from two nonsmokers (top row, middle and right panels) and infected AM
from six smokers (middle and bottom rows). Nonfluorescing (and noninfected) AM are evident in the top row (red
false color), while EGFP fluorescence (yellow/green false color) is evident in AM from smokers infected ex vivo with
NLAD8-EGFP (middle and bottom rows).

confirming the infectivity and cell tropism of the NLAD8-
EGFP virus (fig. 2).

HIV-1 infection is minimally cytopathic for macro-
phages. This cell type-specific property makes it attractive
to consider macrophages as a candidate physiological
long-term viral reservoir. Consistent with this thought,
our NLAD8-EGFP-infected macrophages indeed showed
very little cytopathicity even 20 days after virus infection.
By this time, formation of multicellular syncytia in the
infected cultures was, however, evident. When we illumi-
nated these syncytia by UV and viewed the live cells by
confocal microscopy, brightly fluorescent spots consistent
with green light emission from NLAD8-EGFP-expressed

EGFP protein were easily seen (fig. 3). These fluorescent
spots represent facile hallmarks of infection and illustrate
the usefulness of NLAD8-EGFP as a sensitive and spe-
cific reagent for examining HIV-1 infection of macro-
phages.

In the lung, alveolar macrophages (AM) are the tissue
counterparts of blood monocytes. The lung is a target for
HIV infection, and pulmonary complications are frequent
causes of morbidity and mortality in AIDS [28]. An ongo-
ing controversy is whether cigarette smoking impacts on
pulmonary pathology in HIV-1-infected individuals. Var-
ious studies have either refuted [7, 8] or supported [22] a
linkage between smoking and AIDS progression. Pre-
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viously, Rich and colleagues [1], by measuring peak
HIV-1 p24 antigen production, showed that AM from
smokers were significantly more productive of ex vivo
HIV-1 infection than comparable AM from nonsmokers.
Using NLAD8-EGFP, we decided to revisit this question,
employing AM from two nonsmokers and six smokers. All
eight AM samples were infected ex vivo in parallel with
500,000 cpm of NLAD8-EGFP supernatant. Twenty days
after infection, all cultures were visualized for green fluo-
rescent protein. Interestingly, neither the AM from the
two nonsmokers nor the control uninfected AM showed
EGFP fluorescence (fig. 4, top row). By contrast, all six
AM samples from smokers fluoresced intensely, indicat-
ing successful infection by NLAD8-EGFP (fig. 4, middle
and bottom rows). Pending a larger and better controlled
study of infectivity, these results from our limited sam-
pling size of eight would seem to support the interpreta-
tion that AM from smokers are more highly activated and
infectible by HIV-1 than similar AM from nonsmokers.

Over the past two decades, we have begun to under-
stand the various parameters which govern HIV-1 expres-

sion in cells [15, 16]. It has also become increasingly clear
that the behavior of HIV-1 in macrophages may not be
identical to its behavior in T lymphocytes [10, 20, 25, 27,
38, 39]. Previously, a T-tropic HIV-1 that expresses
EGFP, pR7-GFP, was constructed and examined for
infectivity [24]. Here, we describe an M-tropic counter-
part, pNLAD8-EGFP, which provides a complementing
reagent that should permit rapid parallel comparisons/
contrasts between HIV-1 infection of T lymphocytes and
macrophages. The NLAD8-EGFP virus described here
has also been shown recently to capably infect human
dendritic cells [36].
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